
Dynamic Cohesion Measurement for Distributed System

Wuxia Jin, Ting Liu, Yu Qu, Jianlei Chi, Di Cui, Qinghua Zheng

Ministry of Education Key Lab for Intelligent Networks and Network Security, Xi’an Jiaotong University, Xi’an, China

wx_jin@stu.xjtu.edu.cn, {tingliu, yuqu}@mail.xjtu.edu.cn,

{chijianlei7, cuidi}@sei.xjtu.edu.cn, qhzheng@mail.xjtu.edu.cn

ABSTRACT

Instead of developing single-server software system for the

powerful computers, the software is turning from large single-

server to multi-server system such as distributed system. This

change introduces a new challenge for the software quality

measurement, since the current software analysis methods for

single-server software could not observe and assess the correlation

among the components on different nodes. In this paper, a new

dynamic cohesion approach is proposed for distributed system. We

extend Calling Network model for distributed system by

differentiating methods of components deployed on different nodes.

Two new cohesion metrics are proposed to describe the correlation

at component level, by extending the cohesion metric of single-

server software system. The experiments, conducted on a

distributed systems-Netflix RSS Reader, present how to trace the

various system functions accomplished on three nodes, how to

abstract dynamic behaviors using our model among different nodes

and how to evaluate the software cohesion on distributed system.

CCS Concepts

• Software and its engineering~Software~creation and

management • Software and its engineering~Abstraction,

modeling and modularity

Keywords

Extended Calling Network; Cohesion Metric; Distributed System;

Static Metric; Dynamic Metric

1. INTRODUCTION
Over the past several decades, software system have enjoyed

significant performance benefiting from the fast-developing

hardware techniques, such as computing, storage, communication

etc. However, it has become increasingly more difficult in recent

years to exploit higher CPU speed or larger memory due to various

new applications which are impossible to run on a single machine,

such as urban computing, gene analysis, social network and big

data etc. Instead of developing single-server software for the

powerful computers, software is turning from large single-server to

multi-server system such as distributed system [1]. One large

software system is widely deployed in multiple nodes, and provides

service through communicating and interacting with each other

across nodes (physical machines, Virtual Machines, Docker

container, etc.). This change introduces a new challenge for the

software quality measurement, since the current analysis methods

for single-server software could not observe and assess the

correlation among components on different nodes.

In Software Engineering, one of the main goals is the high quality

assurance of software. Software with high quality is easy for

comprehension and maintenance. Software quality metrics are

popularly used by developers and QAs during software

development. For Object-Oriented software system, the widely

accepted metrics include cohesion, coupling and complexity. The

cohesion of a module indicates the extent to which the components

of the module are related. A highly cohesive module performs a set

of closely related actions and cannot be split into separate modules

[2].

There are a lot of static cohesion metrics. Chidamber and Kemerer

[3] proposed Object-Oriented design metric suite, including Lack

of Cohesion in Methods metric (LCOM). Briand [4] and Counsell

[5] proposed cohesion metrics based on information available in

high-level design phase. Dallal [6] proposed a class cohesion metric

(LSCC) based on the degree of interaction between each pair of

methods from source code. It also verified LSCC usefulness in

improving class cohesive. Qu [7] proposed cohesion metric MCC

and MCEC using Calling Network model extracted from software

source code. MCC and MCEC are measured based on community

structure of software system.

Although static software metric is widely used in software

engineering, existing studies show the static metric is not enough

for software analysis. Yacoub [8] explicitly “distinguished static

and dynamic metrics by differentiating between measuring what is

actually happening (dynamic) rather than what may happen

(static)”. Because of the characteristics of inheritance,

polymorphism, and runtime binding in Object-Oriented paradigm,

static metric is not enough without dynamic one [9, 10]. Dynamic

metric is more accurate than static one, and static cohesion metric

significantly overestimates the cohesion of software due to the

limitation of static analysis methods [11,12]. Specially, Objected-

Oriented distributed system has the distinguished character of

concurrency and asynchronism [13], and there are plenty of

comprehensive and important interacting behaviors across nodes.

Therefore, it is not reasonable and not accurate to measure the

cohesion of distributed system in a static way.

Recently, there are emerging studies focusing on dynamic cohesion

metrics [12,16-18]. Zheng [14] and Tian [15] analyze the dynamic

behaviors based on the interaction among methods. Mitchell [16]

proposed two run-time Object-Oriented cohesion metrics RLCOM

and RWLCOM. Both are direct extensions of LCOM. RLCOM

measures the count of instance variables which are actually

accessed at run-time, while RWLCOM measures cohesion by

weighting each instance variable by the number of times it is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SCTDCP’16, September 3, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-4510-1/16/09...$15.00

http://dx.doi.org/10.1145/2975954.2975956

20

accessed at run-time. Gupta [12] proposed dynamic cohesion

metrics for Object-Oriented software at object level instead of class

level. Compared with RLCOM [16] and LCOM, the experiments

suggested that RLCOM is quite similar to LCOM and the proposed

ones can better capture the dynamic information. Mathur [17]

defined runtime cohesion metric RuCIVA, similar to RLCOM [16].

Desouky [18] proposed a runtime cohesion metric RLCOM-

DESOUKY, an extension to Mathur’s RuCIVA metric. It presented

an empirical comparison with the existing runtime cohesion metrics

suggested by Mitchell et.al. and Mathur et.al. in one case.

However, on one hand, all existing dynamic metrics are just only

validated on single-server software system, not including

distributed system. On the other hand, most analysis approaches for

dynamic cohesion metrics are debugging, dynamic slicing, and

modifying source code. These dynamic analysis methods are high-

cost, not suitable for large-scale software and not capturing the

dynamic behaviors of distributed system. In recent years, many

good monitoring tools for distributed system are emerging, such as

Dapper, Zipkin, and so on [19-21]. By software instrumentation,

the runtime trace information can be acquired in monitoring log.

Through analyzing monitoring log, dynamic behaviors can be

obtained, and they can help in bug analysis and performance

assessment. This mechanism brings low overhead. It is appropriate

and efficient for analyzing large-scale complex software system.

In general, existing static cohesion metrics are not accurate and lose

the significant dynamic behaviors for distributed system. In

addition, compared with other dynamic analysis methods,

monitoring is a high-efficient mechanism to capture the runtime

information of large-scale distributed software system. Therefore,

in this paper focusing on distributed system, we propose a dynamic

cohesion metric at component level for distributed system. Firstly,

we extend Calling Network model for distributed system by

differentiating the methods executed on different nodes. Secondly,

two extended Calling Network generation schemes are proposed:

Growing Calling Network and Partitioned Calling Network.

Thirdly, we present two new cohesion metrics for distributed

software system. Finally, the experiments, conducted on a

distributed systems-Netflix RSS Reader, present how to trace the

various system functions accomplished on three nodes, how to

abstract dynamic behaviors of software using our model and how

to evaluate the software cohesion on distributed system.

The rest of this paper is organized as follows. Section 2 introduces

the extended Calling Network model and cohesion metrics. Section

3 demonstrates the experiments and analysis results, and make

conclusion in Section 4.

2. MODEL AND METHODS

2.1 Extended Calling Network Model
Qu [22] proposed Calling Network for software system, we extend

the model considering distributed system. The extended Calling

Network model for distributed system is given as follows:

Definition 1. Calling Behaviors 𝑐𝑏. 𝑐𝑏 is a trace record of one

method call.

𝑐𝑏𝑘 = (𝑡𝑘 , 𝐶𝑎𝑙𝑙𝑒𝑟𝑘 , 𝐶𝑎𝑙𝑙𝑒𝑒𝑘, 𝑃𝑎𝑟𝑎𝑚𝑘, 𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑟𝑘
, 𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑒𝑘

) .

Where 𝑡𝑘is the timestamp of the method call. 𝐶𝑎𝑙𝑙𝑒𝑟𝑘 and 𝐶𝑎𝑙𝑙𝑒𝑒𝑘

are self-descriptive. 𝑃𝑎𝑟𝑎𝑚𝑘 is the parameter list of

 𝐶𝑎𝑙𝑙𝑒𝑒𝑘. 𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑟𝑘
 is the name of node (physical machine, virtual

machine, container, etc.) which the method is running on. So as

𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑒𝑘
.

Definition 2. Calling Behavior Set 𝐶𝐵. 𝐶𝐵 = {𝑐𝑏𝑘 | 𝑘 ∈ ℕ}. CB

is an ordered set. According to the execution timestamp of all

method calls, 𝑘 is the sequence number of 𝑐𝑏.

Definition 3. Calling Graph. 𝐶𝐺 = (𝑉, 𝐸). 𝐶𝐺 is a directed graph,

in which V stands for the method set and E stands for the method

call relations. Let 𝐿𝑉 be the set of vertex labels, and 𝐿𝐸be the set of

edge labels. 𝐿𝑉 ≠ ∅,𝐿𝐸 ≠ ∅. Let 𝐴𝐷 be the set of discrete attribute

values and 𝐴𝑁 ⊂ ℝ be the set of numeric attribute values, such that

𝐴 = 𝐴𝑁⋃𝐴𝐷 . The label-to-value mapping function for vertex is

denoted as 𝑓𝑣: 𝑉 × 𝐿
𝑉 → A. The label-to-value mapping function

for edge is denoted as 𝑓𝑒: 𝐸 × 𝐿
𝐸 → A. The vertex label and edge

label can have various meanings in different scenario. In this paper,

vertex label is the name of node which the method is running on,

edge label is weight, the method call frequency. That is, 𝑓𝑣: 𝑉 ×
𝐿𝑉 → 𝐴𝐷, 𝑓𝑒: 𝐸 × 𝐿

𝐸 → 𝐴𝑁.

Definition 4. Calling Graph generation function: 𝑓𝐶𝐺_𝐺𝑒𝑛: 𝐶𝐵 →
𝐶𝐺.

Definition 5. Calling Network (CN). CN is an ordered set of CG:

𝐶𝑁 = {𝐶𝐺𝑖|𝑖 ∈ 𝑁} , Where 𝐶𝐺𝑖 = 𝑓𝐶𝐺_𝐺𝑒𝑛(𝐶𝐵𝑖), 𝐶𝐵𝑖 ⊆ 𝐶𝐵 . CB

can be partitioned into 𝐶𝐵𝑖 using some strategies. In this paper, we

discuss two strategies. Other strategies also fit extended CN model.

Strategy 1. Use fixed interval and quantity of 𝑐𝑏𝑠 to generate 𝐶𝐺.

Two parameters are needed in this strategy: 𝑁𝐼𝑡𝑣 and 𝑁𝐶𝐺 . 𝑁𝐼𝑡𝑣

represents interval between two consecutive 𝐶𝐵𝑠 , and 𝑁𝐶𝐺

represents the number of cbs in each 𝐶𝐵𝑖. Then,

𝐶𝐵𝑖 = {𝑐𝑏𝑘|(i − 1) ∙ 𝑁𝐼𝑡𝑣 < k ≤ (i − 1) ∙ 𝑁𝐼𝑡𝑣 + 𝑁𝐶𝐺}.

Strategy 2. Use time interval to partition CB. Two parameters are

set: 𝑇𝑖 and ∆𝑡. 𝑇𝑖 is the 𝑖-th time point, ∆𝑡 is the time window for

selecting cbs. Then 𝐶𝐵𝑖 = {𝑐𝑏𝑘|𝑇𝑖 − ∆𝑡 < 𝑡𝑘 ≤ 𝑇𝑖}.

In general, the Calling Network model is formalized as (Strategy 1

is included):

{

𝐶𝑁 = {𝐶𝐺𝑖 | 𝑖 ∈ 𝑁}

𝐶𝐺𝑖 = 𝑓𝐶𝐺𝐺𝑒𝑛(𝐶𝐵𝑖), 𝐶𝐵𝑖 ⊆ 𝐶𝐵

 𝐶𝐵𝑖 = {𝑐𝑏𝑘 | (i − 1) ∙ 𝑁𝐼𝑡𝑣 < 𝑘 ≤ (i − 1) ∙ 𝑁𝐼𝑡𝑣 + 𝑁𝐶𝐺}

𝐶𝐺 = (𝑉, 𝐸), 𝑓𝑣: 𝑉 × 𝐿
𝑉 → 𝐴𝐷, 𝑓𝑒: 𝐸 × 𝐿

𝐸 → 𝐴𝑁

𝐶𝐵 = {𝑐𝑏𝑘 | 𝑘 ∈ N}

𝑐𝑏𝑘 = (𝑡𝑘 , 𝐶𝑎𝑙𝑙𝑒𝑟𝑘, 𝐶𝑎𝑙𝑙𝑒𝑒𝑘 , 𝑃𝑎𝑟𝑎𝑚𝑘, 𝐿
𝑉𝐶𝑎𝑙𝑙𝑒𝑟𝑘 , 𝐿𝑉𝐶𝑎𝑙𝑙𝑒𝑒𝑘)

2.2 Extended CN Generation Schemes
In this paper, two CN generation schemes are proposed by setting

different parameters.

Scheme1. Growing Calling Network (Growing CN)

Here, use Strategy 1 to partition CB. Assuming 𝑁𝐼𝑡𝑣 = 0 and

𝑁𝐶𝐺 = 𝑖 ∙ 𝑁𝐶𝑜𝑛𝑠𝑡 , where 𝑁𝐶𝑜𝑛𝑠𝑡 is a constant value. Then 𝐶𝐵𝑖 =
{𝑐𝑏𝑘|0 < 𝑘 ≤ i ∙ 𝑁𝐶𝑜𝑛𝑠𝑡} . Obviously, this sequence of CGs

represents the growing process of Calling Graph over time.

Scheme2. Partitioned Calling Network (Partitioned CN)

Here, use Strategy 2 to partition CB. 𝑇𝑖 is the end time of one

business functionality, and ∆𝑡 is the processing time window. For

𝑖-th business functionality, 𝑇𝑖 − ∆𝑡 is the starting time, and 𝑇𝑖 is the

end time of processing. 𝐶𝐵𝑖 = {𝑐𝑏𝑘|𝑇𝑖 − ∆𝑡 < 𝑡𝑘 ≤ 𝑇𝑖}.

21

The number of

method call

(a)

Edges across VMs

Edges inside VMs

Nodes inside VM1

Nodes inside VM2

Nodes inside VM3

500 1000 1500

500 500 500

(b)

(c)

CN-500

CN-1000

CN-1500

CN-P1 CN-P2 CN-P3

CN-F1 CN-F2 CN-F3

Figure 1. An illustration of Partitioned CNs and Growing CNs of com.netflix.recipes.rss

Figure1 shows CNs generated from two schemes above. Package

com.netflix.recipes.rss 1 is instrumented and the whole software

system is deployed on three Virtual Machines (VMs). After the

system is launched, it performs business functions according to

users’ requests over time. The system’ dynamic behaviors are

modeled in two perspectives: Partitioned CN and Growing CN.

Partitioned CNs are illustrated in Figure 1(a). F1, F2 and F3 stand

for three kinds of business functionalities. The corresponding CN-

F1, CN-F2, and CN-F3 are partitioned CNs sliced by the performed

business functionality. Figure 1(c) shows the Growing CNs

including CN-500, CN-1000 and CN-1500, where 𝑁𝐶𝑜𝑛𝑠𝑡 = 500.

Each Growing CN is generated from the system launching time to

the end time when a certain number of method call is reached.

Figure 1(b) presents the incremental part from the previous

Growing CN to the current Growing CN. For example, CN-P2 is

the incremental part from CN-500 to CN-1000. Using Partitioned

CN and Growing CN in Figure 1, we can observe the change

process of dynamic behaviors of the software system.

2.3 Dynamic Cohesion Metric
Employing the similar idea with Lack of Cohesion in Methods

metric (LCOM)[3], two cohesion metric at component level CC

and CCW are proposed. Both are measured based on the extended

Calling Network model. The cohesion idea is: compared with

vertices (methods) without edge between them, if there is an edge

between two vertices (methods), there are strong correlation

between them. Also, take into weight of edge, the more edge weight,

the stronger correlation between the two vertices.

𝐶𝐺 = (𝑉, 𝐸), 𝑓𝑣: 𝑉 × 𝐿
𝑉 → 𝐴𝐷, 𝑓𝑒: 𝐸 × 𝐿

𝐸 → 𝐴𝑁.

𝑃𝑖 = {𝑒𝑗 | 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏), 𝑓𝑣(𝐿
𝑣𝑎) = 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖}

𝑄𝑖 = {𝑒𝑗 | 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏), (𝑓𝑣(𝐿
𝑣𝑎) = 𝐶𝑖 𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏)

≠ 𝐶𝑖) or (𝑓𝑣(𝐿
𝑣𝑎) ≠ 𝐶𝑖 𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖) }

𝑃𝑖 is set of edge which is within Components 𝐶𝑖. 𝑄𝑖 is set of edge

which is across Component 𝐶𝑖.

For Component 𝐶𝑖, the Lack cohesion of method 𝐿𝐶𝑂𝑀_𝑐𝑜𝑚𝑖 is

denoted as:

𝐿𝐶𝑂𝑀_𝑐𝑜𝑚𝑖 =
|𝑄𝑖|

|𝑃𝑖| + |𝑄𝑖|

The cohesion metric 𝑪𝑪𝑖 is denoted as:

1 https://github.com/Netflix/recipes-rss/tree/master/rss-

middletier/src/main/java/com/netflix/recipes/rss

22

(a)CN-Start (b)CN-Add (c)CN-Get (d)CN-Delete (e)CN-Idle

Figure 3. An illustration of five Partitioned CNs

𝑪𝑪𝑖 = 1 − 𝐿𝐶𝑂𝑀_𝑐𝑜𝑚𝑖 =
|𝑃𝑖|

|𝑃𝑖| + |𝑄𝑖|

CCW is similar with CC, only considering weight of edge. Let

𝑃_𝑊𝑖 = {𝑓𝑒(𝑒𝑗) | 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏), 𝑓𝑣(𝐿
𝑣𝑎) = 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖}

𝑄_𝑊𝑖 = {𝑓𝑒(𝑒𝑗)| 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏), (𝑓𝑣(𝐿
𝑣𝑎) = 𝐶𝑖 𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏)

≠ 𝐶𝑖) or (𝑓𝑣(𝐿
𝑣𝑎) ≠ 𝐶𝑖 𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖) }

𝑃_𝑊𝑖 is weight set of edge which is within Components 𝐶𝑖. 𝑄𝑖 is

weight set of edge which is across Component 𝐶𝑖.

For Component 𝐶𝑖, the Lack cohesion of method 𝐿𝐶𝑂𝑀_𝑊_𝑐𝑜𝑚𝑖

is denoted as:

𝐿𝐶𝑂𝑀_𝑊_𝑐𝑜𝑚𝑖 =
 ∑ 𝑥𝑗𝑄_𝑊𝑖

∑ 𝑥𝑗𝑃_𝑊𝑖
+∑ 𝑥𝑗𝑄_𝑊𝑖

The cohesion metric 𝑪𝑪𝑾𝑖 for a Component 𝐶𝑖 is denoted as:

𝑪𝑪𝑾𝑖 = 1 − 𝐿𝐶𝑂𝑀_𝑊_𝑐𝑜𝑚𝑖 =
 ∑ 𝑥𝑗𝑃_𝑊𝑖

∑ 𝑤𝑖𝑃_𝑊𝑖
+ ∑ 𝑥𝑗𝑄_𝑊𝑖

3. EVALUATION

3.1 Setup
We conduct a study on RSS Reader application. RSS Reader2 is a

distributed enterprise application developed by Netflix. This

application provides web service for users to get, add, and delete

RSS feeds. It contains three main service components, including

Middletier, Edge, and Eureka. These components are deployed in

three different nodes (here is VMs) hosted on Ubuntu15.10 server.

The whole service framework is showed in Figure 2.

Eureka Component

Edge Component

ClientMiddletier Component

Registe
r in

sta
nces

of M
iddletier

Manage

communication

between Edge and

Middletier

Request f
rom Client

Respond to
 Client

VM1

VM2

VM3

Discover instances of

Middletier

Figure 2. The service framework of RSS Reader application

In order to collect the dynamic traces, we use Kieker 1.12 [23],

which monitors software system’s runtime behaviors and stores

trace log into memory, file system or database. For distributed

2 https://github.com/Netflix/recipes-rss

3 https://jersey.java.net

system, a big feature is Inter-Process Communication (IPC).

Different type of system adopt different Communication model.

Jersey 3 is one of the implementation of REST-based

communication environment and is used by RSS Reader

application. We collect distributed traces using probes provided by

Kieker 1.12 for REST-based environments with Jersey. In our

experiment, the generated CN is extracted from the trace log using

Python script, and CN is analyzed using Networkx 1.114 Library.

3.2 Partitioned CN
In this section, use Scheme 2 to generate Partitioned CN. The RSS

Reader application provides users with three business

functionalities, including getting, adding, deleting Feeds. We Use

JMeter 5 to separately send Get, Add, and Delete requests

concurrently in five times. So CN-Delete, CN-Add, CN-Get can be

generated. Besides, CN-Start is generated during the period before

the whole service launched successfully, and CN-Idle is generated

lasting one minute during which the application does not have

requests to process. Figure 3 illustrates the five Partitioned CNs.

Methods located on Edge node, Middletier node and Eureka node

are separately rendered in blue, red and yellow color. Each edge is

labeled with weight, call frequency. Edge within node is rendered

in green while edge across nodes is rendered in black. Figure3

shows that the Eureka component does not participate in business

functionality in most cases, so we only focus on Edge and

Middletier components in Partitioned CNs. CC and CCW metrics

are measured and results are listed in Table 1.

Table 1. Measurement result of Partitioned CNs

Partitione

d CN

CC CCW

Middletier Edge Middletier Edge

CN-Start 0.9982 0.9957 0.9939 0.9939

CN-Delete 0.8220 0.6039 0.9811 0.5773

CN-Add 0.8684 0.6154 0.9857 0.5134

CN-Get 0.8732 0.625 0.9924 0.5674

CN-Idle 0.9898 0.9898 0.9848 0.9897

Table 1 shows that each component has high cohesion in different

Partitioned CNs, so the component is well designed and

implemented in this open source distributed system. Specially, CN-

Delete, CN-Add and CN-Get show similar cohesion. The reason is

that these three CNs are generated from runtime traces presenting

similar business logic of the software system. This phenomena

motivates us that we can try to do service partitioning and

4 http://networkx.github.io

5 http://jmeter.apache.org

23

Table 2. Measurement result of Growing CNs

Growing CN
CC CCW

Edge Middletier Eureka Edge Middletier Eureka

CN-100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CN-300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CN-600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CN-900 0.9860 0.9877 0.8261 0.9846 0.9873 0.9432

CN-1000 0.9861 0.9877 0.8961 0.9846 0.9873 0.9627

CN-3000 0.9774 0.9002 0.5608 0.9700 0.8428 0.8347

CN-6000 0.9792 0.9050 0.5608 0.9747 0.8935 0.8645

CN-9000 0.9787 0.9050 0.5608 0.9769 0.9160 0.8681

CN-10000 0.9787 0.9051 0.5570 0.9769 0.914 0.8709

CN-20000 0.9615 0.9017 0.5608 0.9627 0.9372 0.8836

CN-30000 0.9596 0.9031 0.5608 0.9498 0.9489 0.8831

CN-40000 0.9501 0.8947 0.5608 0.9319 0.9567 0.8841

CN-50000 0.9596 0.9005 0.5724 0.9217 0.9650 0.8856

CN-100000 0.9482 0.8973 0.5608 0.9200 0.9626 0.8888

CN-150000 0.9189 0.8766 0.5608 0.9200 0.9632 0.8888

CN-200000 0.9558 0.8999 0.5608 0.9240 0.9778 0.8892

CN-250000 0.9558 0.9009 0.5608 0.9250 0.9764 0.8900

 (a)CN-1000 (b)CN-10000 (c)CN-100000

Figure 4. An illustration of three Growing CNs

CC CCW

 (a)CC value of Growing CNs (b)CCW value of Growing CNs

Figure 5. The cohesion changing chart of Growing CNs

24

deployment optimization based on our model and methods in the

future.

3.3 Growing CN
In this section, use Scheme 1 to generate Growing CN. After RSS

Reader application start successfully, it always remains in running

status. In our experiment, the trace log is generated when the system

is in operation for five hours. During system’s operation, it can

either be in busy or idle status. Because of too many traces, we

divide the scale of growing CN into four level forming four groups

in terms of the number of method call. The first group includes from

CN-100 to CN-900. The second group includes from CN-1000 to

CN-9000. The third one includes from CN-10000 to CN-50000,

and the others forms the fourth group. Figure 4 illustrate three

Growing CNs, and the color interpretation is same as Figure 3. CC

and CCW metrics are also measured and results are listed in Table

2. The changing charts of cohesion metric of the Growing CNs are

showed in Figure 5.

Table 2 shows that each component has high cohesion in different

Growing CNs. It is discovered that the measured cohesion metric

of Eureka component is relatively lower than ones of Middletier

and Edge component. This feature is related with the role or

function of Eureka Component. Eureka is responsible for locating

service component and load balancing 6 , so it performs more

interaction behaviors across components than other components.

Also, Figure 5 shows that cohesion of each component tends to be

a stable state with the scale increase of growing CNs over time. It

motivates us whether the cohesion metric fluctuates dramatically or

not if some faults happen in the software system, and we will

conduct such study in the future.

4. CONCLUSION AND DISCUSSION
In this paper, we have proposed an extended Calling Network

model to abstract dynamic behaviors of distributed system. Based

on this model, two dynamic cohesion metric CC and CCW,

extensions from LCOM, are proposed at component level. We

conducted one study on a distributed system-RSS Reader. It has

been showed that our model and cohesion metrics, extracted from

trace log by monitoring, can well present the dynamic behavioral

characteristic for a distributed system. It has been discovered that

component is highly cohesive in a distributed system with high

quality, and the dynamic cohesion metric of Growing CNs tends to

be stable with the growing of CNs over time. In addition, it has been

discovered that Partitioned CNs with similar kinds of business

functionality show similar cohesion feature.

Of course, there are some points to be improved in this paper. In

the future, on one hand more experiments will be conducted on

diverse distributed systems to validate our model and methods. On

the other hand, we will do comparison with the existing study with

respect to dynamic cohesion metric.

5. ACKNOWLEDGMENTS
This work was supported by the National Natural Science

Foundation of China (91218301, U1301254, 91418205, 61472318,

61428206, 61532015), Fok Ying-Tong Education Foundation

(151067), Key Project of the National Research Program of China

(2013BAK09B01), Ministry of Education Innovation Research

6 https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Team (IRT13035) and the Fundamental Research Funds for the

Central Universities.

6. REFERENCES
[1] Y. Han. 2010. On the clouds: a new way of computing.

Information Technology and Libraries, 29, 2 (June. 2010),

87–92. DOI= http://dx.doi.org/10.6017/ital.v29i2.3147.

[2] J. Bieman and L. Ott. 1994. Measuring functional cohesion.

IEEE Trans. Software Eng. 20, 8 (August. 1994), 644-657.

DOI= http://dx.doi.org/10.1109/32.310673.

[3] Chidamber SR, Kemerer CF. 1994. A metrics suite for object

oriented design. IEEE Trans. Software Eng. 20, 6 (June.

1994), 476-493. DOI= http://dx.doi.org/10.1109/32.295895.

[4] L. C. Briand , S. Morasca , and V. R. Basili. 1999. Defining

and validating measures for object-based high-level design.

IEEE Trans. Software Eng. 25, 5 (September. 1999), 722-

743. DOI= http://dx.doi.org/10.1109/32.815329.

[5] S. Counsell, S. Swift, and J. Crampton. 2006. The

interpretation and utility of three cohesion metrics for object-

oriented design. ACM Trans. Softw. Eng. Methodol.

(TOSEM), 15, 2 (April. 2006), 123-149. DOI=

http://doi.acm.org/10.1145/1131421.1131422.

[6] Al Dallal J, Briand LC. 2012. A precise method-method

interaction-based cohesion metric for object-oriented classes.

ACM Tran. Softw. Eng. Methodol. (TOSEM), 21, 2 (March.

2012), 8-8.

DOI=http://dx.doi.org/10.1145/2089116.2089118.

[7] Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Lidan

Wang, Yuqiao Hou, Zijiang Yang. 2015. Exploring

community structure of software Call Graph and its

applications in class cohesion measurement. J. Syst. Softw.

108 (October. 2015), 193-210.

DOI=http://dx.doi.org/10.1016/j.jss.2015.06.015.

[8] S. M. Yacoub, H. H. Ammar, T. Robinson. 1999. Dynamic

metrics for object oriented designs. In Proceedings of the

Sixth International Software Metrics Symposium (Florida,

USA, November 04 - 06, 1999). Metrics’99. IEEE Computer

Society, California, CA, 50-61.

DOI=http://dx.doi.org/10.1109/METRIC.1999.809725.

[9] Amjed Tahir and Stephen G. MacDonell. 2012. A systematic

mapping study on dynamic metrics and software quality. In

Proceedings of the 28th IEEE International Conference on

Software Maintenance (Trento, Italy, September 23 – 28,

2012). ICSM’12. IEEE Computer Society, Washington DC,

326-335. DOI=

http://dx.doi.org/10.1109/ICSM.2012.6405289.

[10] E. Arisholm, L. C. Briand , A. Foyen. 2004. Dynamic

coupling measurement for object-oriented software. IEEE

Trans. Software Eng. 30, 8 (August. 2004), 491-506. DOI=

http://dx.doi.org/10.1109/TSE.2004.41.

[11] N. Gupta, Tucson, AZ, P. Rao. 2001. Program execution

based module cohesion measurement. In Proceedings of the

16th Annual International Conference on Automated

Software Engineering (California, USA, November 26 - 29,

2001). ASE’01. IEEE Computer Society, US, 144 – 153.

DOI= http://dx.doi.org/10.1109/ASE.2001.989800.

25

[12] Varun Gupta, Jitender Kumar Chhabra. 2011. Dynamic

cohesion measures for object-oriented software. J. Syst.

Archit. 57, 4 (April. 2011), 452–462.

DOI=http://dx.doi.org/10.1016/j.sysarc.2010.05.008.

[13] Andrew S. Tanenbaum, Maarten Van Steen. 2006.

Distributed Systems: Principles and Paradigms (2nd Edition).

Upper Saddle River, NJ, USA.

[14] Zheng Q H, Ou Z J, Liu T, et al. 2012. Software structure

evaluation based on the interaction and encapsulation of

methods. Sci. China Inf. Sci. 55, 12 (December. 2012), 2816-

2825. DOI= http://dx.doi.org/10.1007/s11432-012-4542-4.

[15] Tian, Z., Zheng, Q., Liu, T., Fan, M., Zhuang, E. and Yang,

Z. 2015. Software plagiarism detection with birthmarks

based on dynamic key instruction sequences. IEEE Trans.

Software Eng. 41, 12 (December. 2015), 1217-1235. DOI=

http://dx.doi.org/10.1109/TSE.2015.2454508.

[16] Aine Mitchell, James F. Power. 2004. Run-time cohesion

metrics: an empirical investigation. In Proceedings of

International Conference on Software Engineering Research

and Practice (Nevada, USA, June 21 – 24, 2004). SERP’04.

CSREA Press, 532-537. DOI=

http://dx.doi.org/10.1.1.100.7997.

[17] Mathur, R., Keen, K. J., and Etzkorn, L. H. 2011. Towards a

measure of object oriented runtime cohesion based on

number of instance variable accesses. In Proceedings of the

49th Annual Southeast Regional Conference (Kennesaw,

USA, March 24 – 26, 2011). ACM-SE '11. ACM, New York,

NY, 255-257. DOI=

http://dx.doi.org/10.1145/2016039.2016105.

[18] Amr F. Desouky, Letha H. Etzkorn. Object oriented cohesion

metrics: a qualitative empirical analysis of runtime behavior.

In Proceedings of the 49th Annual Southeast Regional

Conference (Kennesaw, GA, USA, March 28 – 29, 2014).

ACM SE '14. ACM, New York, NY, 58-63. DOI=

http://dx.doi.org/10.1145/2638404.2638464.

[19] Benjamin H. Sigelman, Luiz Andre Barroso, Mike Burrows,

etc.. 2010. Dapper, A Large-Scale Distributed Systems

Tracing Infrastructure. Technical Report. Google.

[20] Aniszczyk, C. 2012. Distributed Systems Tracing with

Zipkin. Technical Report. Twitter Blog.

[21] Caitle Mccaffrey. 2015. The verification of a distributed

system. ACM Queue, 13, 9 (November-December. 2015),

150-161. DOI= http://dx.doi.org/10.1145/2857274.2889274.

[22] Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Jianliang

Zhou, Jian Li. 2015. Calling network: a new method for

modeling software runtime behaviors. ACM SIGSOFT Softw.

Eng. Notes, 40, 1 (January. 2015), 1-8. DOI=

http://dx.doi.org/10.1145/2693208.2693223.

[23] A. van Hoorn, J. Waller, and W. Hasselbring. 2012. Kieker:

a framework for application performance monitoring and

dynamic software analysis. In Proceedings of the Third Joint

WOSP/SIPEW International Conference on Performance

Engineering(Boston, USA, April 22 – 25, 2012). ICPE’12.

ACM, New York, NY, 247–248. DOI=

http://doi.acm.org/10.1145/2188286.2188326.

26

