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ABSTRACT 

Instead of developing single-server software system for the 

powerful computers, the software is turning from large single-

server to multi-server system such as distributed system. This 

change introduces a new challenge for the software quality 

measurement, since the current software analysis methods for 

single-server software could not observe and assess the correlation 

among the components on different nodes. In this paper, a new 

dynamic cohesion approach is proposed for distributed system. We 

extend Calling Network model for distributed system by 

differentiating methods of components deployed on different nodes. 

Two new cohesion metrics are proposed to describe the correlation 

at component level, by extending the cohesion metric of single-

server software system. The experiments, conducted on a 

distributed systems-Netflix RSS Reader, present how to trace the 

various system functions accomplished on three nodes, how to 

abstract dynamic behaviors using our model among different nodes 

and how to evaluate the software cohesion on distributed system. 

CCS Concepts  

• Software and its engineering~Software~creation and 

management   • Software and its engineering~Abstraction, 

modeling and modularity 

Keywords 

Extended Calling Network; Cohesion Metric; Distributed System; 

Static Metric; Dynamic Metric 

1. INTRODUCTION 
Over the past several decades, software system have enjoyed 

significant performance benefiting from the fast-developing 

hardware techniques, such as computing, storage, communication 

etc. However, it has become increasingly more difficult in recent 

years to exploit higher CPU speed or larger memory due to various 

new applications which are impossible to run on a single machine, 

such as urban computing, gene analysis, social network and big 

data etc. Instead of developing single-server software for the 

powerful computers, software is turning from large single-server to 

multi-server system such as distributed system [1]. One large 

software system is widely deployed in multiple nodes, and provides 

service through communicating and interacting with each other 

across   nodes   (physical  machines,  Virtual  Machines,  Docker   

container, etc.). This change introduces a new challenge for the 

software quality measurement, since the current analysis methods 

for single-server software could not observe and assess the 

correlation among components on different nodes. 

In Software Engineering, one of the main goals is the high quality 

assurance of software. Software with high quality is easy for 

comprehension and maintenance. Software quality metrics are 

popularly used by developers and QAs during software 

development. For Object-Oriented software system, the widely 

accepted metrics include cohesion, coupling and complexity. The 

cohesion of a module indicates the extent to which the components 

of the module are related. A highly cohesive module performs a set 

of closely related actions and cannot be split into separate modules 

[2].   

There are a lot of static cohesion metrics. Chidamber and Kemerer 

[3] proposed Object-Oriented design metric suite, including Lack 

of Cohesion in Methods metric (LCOM). Briand [4] and Counsell 

[5] proposed cohesion metrics based on information available in 

high-level design phase. Dallal [6] proposed a class cohesion metric 

(LSCC) based on the degree of interaction between each pair of 

methods from source code. It also verified LSCC usefulness in 

improving class cohesive. Qu [7] proposed cohesion metric MCC 

and MCEC using Calling Network model extracted from software 

source code. MCC and MCEC are measured based on community 

structure of software system.  

Although static software metric is widely used in software 

engineering, existing studies show the static metric is not enough 

for software analysis. Yacoub [8] explicitly “distinguished static 

and dynamic metrics by differentiating between measuring what is 

actually happening (dynamic) rather than what may happen 

(static)”. Because of the characteristics of inheritance, 

polymorphism, and runtime binding in Object-Oriented paradigm, 

static metric is not enough without dynamic one [9, 10]. Dynamic 

metric is more accurate than static one, and static cohesion metric 

significantly overestimates the cohesion of software due to the 

limitation of static analysis methods [11,12]. Specially, Objected-

Oriented distributed system has the distinguished character of 

concurrency and asynchronism [13], and there are plenty of 

comprehensive and important interacting behaviors across nodes. 

Therefore, it is not reasonable and not accurate to measure the 

cohesion of distributed system in a static way. 

Recently, there are emerging studies focusing on dynamic cohesion 

metrics [12,16-18].  Zheng [14] and Tian [15] analyze the dynamic 

behaviors based on the interaction among methods. Mitchell [16] 

proposed two run-time Object-Oriented cohesion metrics RLCOM 

and RWLCOM. Both are direct extensions of LCOM. RLCOM 

measures the count of instance variables which are actually 

accessed at run-time, while RWLCOM measures cohesion by 

weighting each instance variable by the number of times it is 
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accessed at run-time. Gupta [12] proposed dynamic cohesion 

metrics for Object-Oriented software at object level instead of class 

level. Compared with RLCOM [16] and LCOM, the experiments 

suggested that RLCOM is quite similar to LCOM and the proposed 

ones can better capture the dynamic information. Mathur [17] 

defined runtime cohesion metric RuCIVA, similar to RLCOM [16]. 

Desouky [18] proposed a runtime cohesion metric RLCOM-

DESOUKY, an extension to Mathur’s RuCIVA metric. It presented 

an empirical comparison with the existing runtime cohesion metrics 

suggested by Mitchell et.al. and Mathur et.al. in one case.  

However, on one hand, all existing dynamic metrics are just only 

validated on single-server software system, not including 

distributed system. On the other hand, most analysis approaches for 

dynamic cohesion metrics are debugging, dynamic slicing, and 

modifying source code. These dynamic analysis methods are high-

cost, not suitable for large-scale software and not capturing the 

dynamic behaviors of distributed system. In recent years, many 

good monitoring tools for distributed system are emerging, such as 

Dapper, Zipkin, and so on [19-21]. By software instrumentation, 

the runtime trace information can be acquired in monitoring log. 

Through analyzing monitoring log, dynamic behaviors can be 

obtained, and they can help in bug analysis and performance 

assessment. This mechanism brings low overhead. It is appropriate 

and efficient for analyzing large-scale complex software system. 

In general, existing static cohesion metrics are not accurate and lose 

the significant dynamic behaviors for distributed system. In 

addition, compared with other dynamic analysis methods, 

monitoring is a high-efficient mechanism to capture the runtime 

information of large-scale distributed software system. Therefore, 

in this paper focusing on distributed system, we propose a dynamic 

cohesion metric at component level for distributed system. Firstly, 

we extend Calling Network model for distributed system by 

differentiating the methods executed on different nodes. Secondly, 

two extended Calling Network generation schemes are proposed: 

Growing Calling Network and Partitioned Calling Network. 

Thirdly, we present two new cohesion metrics for distributed 

software system. Finally, the experiments, conducted on a 

distributed systems-Netflix RSS Reader, present how to trace the 

various system functions accomplished on three nodes, how to 

abstract dynamic behaviors of software using our model and how 

to evaluate the software cohesion on distributed system. 

The rest of this paper is organized as follows. Section 2 introduces 

the extended Calling Network model and cohesion metrics. Section 

3 demonstrates the experiments and analysis results, and make 

conclusion in Section 4. 

2. MODEL AND METHODS 

2.1 Extended Calling Network Model  
Qu [22] proposed Calling Network for software system, we extend 

the model considering distributed system. The extended Calling 

Network model for distributed system is given as follows: 

Definition 1. Calling Behaviors 𝑐𝑏.  𝑐𝑏 is a trace record of one 

method call. 

𝑐𝑏𝑘 = (𝑡𝑘 , 𝐶𝑎𝑙𝑙𝑒𝑟𝑘 , 𝐶𝑎𝑙𝑙𝑒𝑒𝑘, 𝑃𝑎𝑟𝑎𝑚𝑘, 𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑟𝑘
, 𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑒𝑘

) . 

Where 𝑡𝑘is the timestamp of the method call. 𝐶𝑎𝑙𝑙𝑒𝑟𝑘 and  𝐶𝑎𝑙𝑙𝑒𝑒𝑘 

are self-descriptive. 𝑃𝑎𝑟𝑎𝑚𝑘  is the parameter list of 

 𝐶𝑎𝑙𝑙𝑒𝑒𝑘. 𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑟𝑘
 is the name of node (physical machine, virtual 

machine, container, etc.) which the method is running on. So as 

𝑉𝑀𝐶𝑎𝑙𝑙𝑒𝑒𝑘
. 

Definition 2. Calling Behavior Set 𝐶𝐵. 𝐶𝐵 = {𝑐𝑏𝑘  | 𝑘 ∈ ℕ}. CB 

is an ordered set. According to the execution timestamp of all 

method calls, 𝑘 is the sequence number of 𝑐𝑏. 

Definition 3. Calling Graph. 𝐶𝐺 = (𝑉, 𝐸). 𝐶𝐺 is a directed graph, 

in which V stands for the method set and E stands for the method 

call relations. Let 𝐿𝑉 be the set of vertex labels, and 𝐿𝐸be the set of 

edge labels. 𝐿𝑉 ≠ ∅,𝐿𝐸 ≠ ∅. Let 𝐴𝐷 be the set of discrete attribute 

values and 𝐴𝑁 ⊂ ℝ be the set of numeric attribute values, such that 

𝐴 = 𝐴𝑁⋃𝐴𝐷 . The label-to-value mapping function for vertex is 

denoted as 𝑓𝑣: 𝑉 × 𝐿
𝑉 → A. The label-to-value mapping function 

for edge is denoted as 𝑓𝑒: 𝐸 × 𝐿
𝐸 → A. The vertex label and edge 

label can have various meanings in different scenario. In this paper, 

vertex label is the name of node which the method is running on, 

edge label is weight, the method call frequency. That is, 𝑓𝑣: 𝑉 ×
𝐿𝑉 → 𝐴𝐷, 𝑓𝑒: 𝐸 × 𝐿

𝐸 → 𝐴𝑁. 

Definition 4. Calling Graph generation function: 𝑓𝐶𝐺_𝐺𝑒𝑛: 𝐶𝐵 →
𝐶𝐺. 

Definition 5. Calling Network (CN). CN is an ordered set of CG: 

𝐶𝑁 = {𝐶𝐺𝑖|𝑖 ∈ 𝑁} , Where 𝐶𝐺𝑖 = 𝑓𝐶𝐺_𝐺𝑒𝑛(𝐶𝐵𝑖), 𝐶𝐵𝑖 ⊆ 𝐶𝐵 . CB 

can be partitioned into 𝐶𝐵𝑖 using some strategies. In this paper, we 

discuss two strategies. Other strategies also fit extended CN model.    

Strategy 1. Use fixed interval and quantity of 𝑐𝑏𝑠 to generate 𝐶𝐺. 

Two parameters are needed in this strategy: 𝑁𝐼𝑡𝑣  and 𝑁𝐶𝐺 . 𝑁𝐼𝑡𝑣 

represents interval between two consecutive 𝐶𝐵𝑠 , and 𝑁𝐶𝐺 

represents the number of cbs in each 𝐶𝐵𝑖. Then, 

𝐶𝐵𝑖 = {𝑐𝑏𝑘|(i − 1) ∙ 𝑁𝐼𝑡𝑣 < k ≤ (i − 1) ∙ 𝑁𝐼𝑡𝑣 + 𝑁𝐶𝐺}. 

Strategy 2. Use time interval to partition CB. Two parameters are 

set: 𝑇𝑖 and ∆𝑡. 𝑇𝑖 is the 𝑖-th time point, ∆𝑡 is the time window for 

selecting cbs. Then 𝐶𝐵𝑖 = {𝑐𝑏𝑘|𝑇𝑖 − ∆𝑡 < 𝑡𝑘 ≤ 𝑇𝑖}. 

In general, the Calling Network model is formalized as (Strategy 1 

is included): 

{
  
 

  
 

 

𝐶𝑁 = {𝐶𝐺𝑖  | 𝑖 ∈ 𝑁}                                                                              

𝐶𝐺𝑖 = 𝑓𝐶𝐺𝐺𝑒𝑛(𝐶𝐵𝑖), 𝐶𝐵𝑖 ⊆ 𝐶𝐵                                                  

 𝐶𝐵𝑖 = {𝑐𝑏𝑘  | (i − 1) ∙ 𝑁𝐼𝑡𝑣 < 𝑘 ≤ (i − 1) ∙ 𝑁𝐼𝑡𝑣 + 𝑁𝐶𝐺}            

𝐶𝐺 = (𝑉, 𝐸), 𝑓𝑣: 𝑉 × 𝐿
𝑉 → 𝐴𝐷, 𝑓𝑒: 𝐸 × 𝐿

𝐸 → 𝐴𝑁

𝐶𝐵 = {𝑐𝑏𝑘  | 𝑘 ∈ N}                                                                             

𝑐𝑏𝑘 = (𝑡𝑘 , 𝐶𝑎𝑙𝑙𝑒𝑟𝑘, 𝐶𝑎𝑙𝑙𝑒𝑒𝑘 , 𝑃𝑎𝑟𝑎𝑚𝑘, 𝐿
𝑉𝐶𝑎𝑙𝑙𝑒𝑟𝑘 , 𝐿𝑉𝐶𝑎𝑙𝑙𝑒𝑒𝑘)          

 

2.2 Extended CN Generation Schemes 
In this paper, two CN generation schemes are proposed by setting 

different parameters. 

Scheme1. Growing Calling Network (Growing CN) 

Here, use Strategy 1 to partition CB. Assuming 𝑁𝐼𝑡𝑣 = 0  and 

𝑁𝐶𝐺 = 𝑖 ∙ 𝑁𝐶𝑜𝑛𝑠𝑡 , where 𝑁𝐶𝑜𝑛𝑠𝑡  is a constant value. Then 𝐶𝐵𝑖 =
{𝑐𝑏𝑘|0 < 𝑘 ≤ i ∙ 𝑁𝐶𝑜𝑛𝑠𝑡} . Obviously, this sequence of CGs 

represents the growing process of Calling Graph over time.  

Scheme2. Partitioned Calling Network (Partitioned CN) 

Here, use Strategy 2 to partition CB. 𝑇𝑖  is the end time of one 

business functionality, and ∆𝑡 is the processing time window. For 

𝑖-th business functionality, 𝑇𝑖 − ∆𝑡 is the starting time, and 𝑇𝑖 is the 

end time of processing. 𝐶𝐵𝑖 = {𝑐𝑏𝑘|𝑇𝑖 − ∆𝑡 < 𝑡𝑘 ≤ 𝑇𝑖}.
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Figure 1. An illustration of Partitioned CNs and Growing CNs of com.netflix.recipes.rss

Figure1 shows CNs generated from two schemes above. Package 

com.netflix.recipes.rss 1 is instrumented and the whole software 

system is deployed on three Virtual Machines (VMs). After the 

system is launched, it performs business functions according to 

users’ requests over time.  The system’ dynamic behaviors are 

modeled in two perspectives: Partitioned CN and Growing CN. 

Partitioned CNs are illustrated in Figure 1(a). F1, F2 and F3 stand 

for three kinds of business functionalities. The corresponding CN-

F1, CN-F2, and CN-F3 are partitioned CNs sliced by the performed 

business functionality. Figure 1(c) shows the Growing CNs 

including CN-500, CN-1000 and CN-1500,  where 𝑁𝐶𝑜𝑛𝑠𝑡 = 500. 

Each Growing CN is generated from the system launching time to 

the end time when a certain number of method call is reached. 

Figure 1(b) presents the incremental part from the previous 

Growing CN to the current Growing CN. For example, CN-P2 is 

the incremental part from CN-500 to CN-1000. Using Partitioned 

CN and Growing CN in Figure 1, we can observe the change 

process of dynamic behaviors of the software system.  

2.3 Dynamic Cohesion Metric  
Employing the similar idea with Lack of Cohesion in Methods 

metric (LCOM)[3], two cohesion metric at component level CC 

and CCW are proposed. Both are measured based on the extended 

Calling Network model. The cohesion idea is: compared with 

vertices (methods) without edge between them, if there is an edge 

between two vertices (methods), there are strong correlation 

between them. Also, take into weight of edge, the more edge weight, 

the stronger correlation between the two vertices.  

𝐶𝐺 = (𝑉, 𝐸), 𝑓𝑣: 𝑉 × 𝐿
𝑉 → 𝐴𝐷, 𝑓𝑒: 𝐸 × 𝐿

𝐸 → 𝐴𝑁.   

𝑃𝑖 = {𝑒𝑗  | 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏), 𝑓𝑣(𝐿
𝑣𝑎) = 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖} 

𝑄𝑖 = {𝑒𝑗  | 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏),  (𝑓𝑣(𝐿
𝑣𝑎) = 𝐶𝑖  𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏)

≠ 𝐶𝑖)   or (𝑓𝑣(𝐿
𝑣𝑎) ≠ 𝐶𝑖  𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖) }  

𝑃𝑖 is set of edge which is within Components 𝐶𝑖. 𝑄𝑖 is set of edge 

which is across Component 𝐶𝑖. 

For Component 𝐶𝑖, the Lack cohesion of method 𝐿𝐶𝑂𝑀_𝑐𝑜𝑚𝑖 is 

denoted as: 

𝐿𝐶𝑂𝑀_𝑐𝑜𝑚𝑖 =
|𝑄𝑖|

|𝑃𝑖| + |𝑄𝑖|
 

The cohesion metric 𝑪𝑪𝑖 is denoted as:

                                                                 

1 https://github.com/Netflix/recipes-rss/tree/master/rss-

middletier/src/main/java/com/netflix/recipes/rss 
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(a)CN-Start                     (b)CN-Add                           (c)CN-Get                         (d)CN-Delete                          (e)CN-Idle 

Figure 3. An illustration of five Partitioned CNs

𝑪𝑪𝑖 = 1 − 𝐿𝐶𝑂𝑀_𝑐𝑜𝑚𝑖 =
|𝑃𝑖|

|𝑃𝑖| + |𝑄𝑖|
 

CCW is similar with CC, only considering weight of edge. Let 

𝑃_𝑊𝑖 = {𝑓𝑒(𝑒𝑗) | 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏), 𝑓𝑣(𝐿
𝑣𝑎) = 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖} 

𝑄_𝑊𝑖 = {𝑓𝑒(𝑒𝑗)| 𝑒𝑗 = (𝑣𝑎, 𝑣𝑏),  (𝑓𝑣(𝐿
𝑣𝑎) = 𝐶𝑖  𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏)

≠ 𝐶𝑖)  or (𝑓𝑣(𝐿
𝑣𝑎) ≠ 𝐶𝑖  𝑎𝑛𝑑 𝑓𝑣(𝐿

𝑣𝑏) = 𝐶𝑖) } 

𝑃_𝑊𝑖  is weight set of edge which is within Components 𝐶𝑖. 𝑄𝑖 is 

weight set of edge which is across Component 𝐶𝑖. 

For Component 𝐶𝑖, the Lack cohesion of method 𝐿𝐶𝑂𝑀_𝑊_𝑐𝑜𝑚𝑖 

is denoted as: 

𝐿𝐶𝑂𝑀_𝑊_𝑐𝑜𝑚𝑖 =
 ∑ 𝑥𝑗𝑄_𝑊𝑖

∑ 𝑥𝑗𝑃_𝑊𝑖
+∑ 𝑥𝑗𝑄_𝑊𝑖

 

The cohesion metric 𝑪𝑪𝑾𝑖 for a Component 𝐶𝑖 is denoted as: 

𝑪𝑪𝑾𝑖 = 1 − 𝐿𝐶𝑂𝑀_𝑊_𝑐𝑜𝑚𝑖 =
 ∑ 𝑥𝑗𝑃_𝑊𝑖

∑ 𝑤𝑖𝑃_𝑊𝑖
+ ∑ 𝑥𝑗𝑄_𝑊𝑖

 

 

3. EVALUATION 

3.1 Setup 
We conduct a study on RSS Reader application. RSS Reader2 is a 

distributed enterprise application developed by Netflix. This 

application provides web service for users to get, add, and delete 

RSS feeds. It contains three main service components, including 

Middletier, Edge, and Eureka. These components are deployed in 

three different nodes (here is VMs) hosted on Ubuntu15.10 server. 

The whole service framework is showed in Figure 2. 

Eureka Component

Edge Component

ClientMiddletier Component

Registe
r  in

sta
nces 

of M
iddletier

Manage 

communication 

between Edge and 

Middletier

Request f
rom Client

Respond to
 Client

VM1

VM2

VM3

Discover instances of 

Middletier

 

Figure 2. The service framework of RSS Reader application 

In order to collect the dynamic traces, we use Kieker 1.12 [23], 

which monitors software system’s runtime behaviors and stores 

trace log into memory, file system or database. For distributed 

                                                                 

2 https://github.com/Netflix/recipes-rss 

3 https://jersey.java.net 

system, a big feature is Inter-Process Communication (IPC). 

Different type of system adopt different Communication model. 

Jersey 3  is one of the implementation of REST-based 

communication environment and is used by RSS Reader 

application. We collect distributed traces using probes provided by 

Kieker 1.12 for REST-based environments with Jersey. In our 

experiment, the generated CN is extracted from the trace log using 

Python script, and CN is analyzed using Networkx 1.114 Library. 

3.2 Partitioned CN 
In this section, use Scheme 2 to generate Partitioned CN. The RSS 

Reader application provides users with three business 

functionalities, including getting, adding, deleting Feeds. We Use 

JMeter 5  to separately send Get, Add, and Delete requests 

concurrently in five times. So CN-Delete, CN-Add, CN-Get can be 

generated. Besides, CN-Start is generated during the period before 

the whole service launched successfully, and CN-Idle is generated 

lasting one minute during which the application does not have 

requests to process. Figure 3 illustrates the five Partitioned CNs. 

Methods located on Edge node, Middletier node and Eureka node 

are separately rendered in blue, red and yellow color. Each edge is 

labeled with weight, call frequency. Edge within node is rendered 

in green while edge across nodes is rendered in black. Figure3 

shows that the Eureka component does not participate in business 

functionality in most cases, so we only focus on Edge and 

Middletier components in Partitioned CNs. CC and CCW metrics 

are measured and results are listed in Table 1.  

Table 1. Measurement result of Partitioned CNs 

Partitione

d CN 

CC CCW 

Middletier Edge Middletier Edge 

CN-Start 0.9982 0.9957 0.9939 0.9939 

CN-Delete 0.8220 0.6039 0.9811 0.5773 

CN-Add 0.8684 0.6154 0.9857 0.5134 

CN-Get 0.8732 0.625 0.9924 0.5674 

CN-Idle 0.9898 0.9898 0.9848 0.9897 

Table 1 shows that each component has high cohesion in different 

Partitioned CNs, so the component is well designed and 

implemented in this open source distributed system. Specially, CN-

Delete, CN-Add and CN-Get show similar cohesion. The reason is 

that these three CNs are generated from runtime traces presenting 

similar business logic of the software system. This phenomena 

motivates us that we  can  try  to  do  service   partitioning   and

4 http://networkx.github.io 

5 http://jmeter.apache.org 
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Table 2. Measurement result of Growing CNs 

Growing CN 
CC CCW 

Edge Middletier Eureka Edge Middletier Eureka 

CN-100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CN-300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CN-600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

CN-900 0.9860 0.9877 0.8261 0.9846 0.9873 0.9432 

CN-1000 0.9861 0.9877 0.8961 0.9846 0.9873 0.9627 

CN-3000 0.9774 0.9002 0.5608 0.9700 0.8428 0.8347 

CN-6000 0.9792 0.9050 0.5608 0.9747 0.8935 0.8645 

CN-9000 0.9787 0.9050 0.5608 0.9769 0.9160 0.8681 

CN-10000 0.9787 0.9051 0.5570 0.9769 0.914 0.8709 

CN-20000 0.9615 0.9017 0.5608 0.9627 0.9372 0.8836 

CN-30000 0.9596 0.9031 0.5608 0.9498 0.9489 0.8831 

CN-40000 0.9501 0.8947 0.5608 0.9319 0.9567 0.8841 

CN-50000 0.9596 0.9005 0.5724 0.9217 0.9650 0.8856 

CN-100000 0.9482 0.8973 0.5608 0.9200 0.9626 0.8888 

CN-150000 0.9189 0.8766 0.5608 0.9200 0.9632 0.8888 

CN-200000 0.9558 0.8999 0.5608 0.9240 0.9778 0.8892 

CN-250000 0.9558 0.9009 0.5608 0.9250 0.9764 0.8900 

 

          (a)CN-1000                                       (b)CN-10000                                     (c)CN-100000 

Figure 4. An illustration of three Growing CNs 

CC CCW

 

      (a)CC value of Growing CNs                                                 (b)CCW value of Growing CNs 

Figure 5. The cohesion changing chart of Growing CNs 
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deployment optimization based on our model and methods in the 

future.  

3.3 Growing CN 
In this section, use Scheme 1 to generate Growing CN. After RSS 

Reader application start successfully, it always remains in running 

status. In our experiment, the trace log is generated when the system 

is in operation for five hours. During system’s operation, it can 

either be in busy or idle status. Because of too many traces, we 

divide the scale of growing CN into four level forming four groups 

in terms of the number of method call. The first group includes from 

CN-100 to CN-900. The second group includes from CN-1000 to 

CN-9000. The third one includes from CN-10000 to CN-50000, 

and the others forms the fourth group. Figure 4 illustrate three 

Growing CNs, and the color interpretation is same as Figure 3. CC 

and CCW metrics are also measured and results are listed in Table 

2. The changing charts of cohesion metric of the Growing CNs are 

showed in Figure 5. 

Table 2 shows that each component has high cohesion in different 

Growing CNs. It is discovered that the measured cohesion metric 

of Eureka component is relatively lower than ones of Middletier 

and Edge component. This feature is related with the role or 

function of Eureka Component. Eureka is responsible for locating 

service component and load balancing 6 , so it performs more 

interaction behaviors across components than other components. 

Also, Figure 5 shows that cohesion of each component tends to be 

a stable state with the scale increase of growing CNs over time. It 

motivates us whether the cohesion metric fluctuates dramatically or 

not if some faults happen in the software system, and we will 

conduct such study in the future. 

4. CONCLUSION AND DISCUSSION 
In this paper, we have proposed an extended Calling Network 

model to abstract dynamic behaviors of distributed system. Based 

on this model, two dynamic cohesion metric CC and CCW, 

extensions from LCOM, are proposed at component level. We 

conducted one study on a distributed system-RSS Reader. It has 

been showed that our model and cohesion metrics, extracted from 

trace log by monitoring, can well present the dynamic behavioral 

characteristic for a distributed system. It has been discovered that 

component is highly cohesive in a distributed system with high 

quality, and the dynamic cohesion metric of Growing CNs tends to 

be stable with the growing of CNs over time. In addition, it has been 

discovered that Partitioned CNs with similar kinds of business 

functionality show similar cohesion feature.  

Of course, there are some points to be improved in this paper. In 

the future, on one hand more experiments will be conducted on 

diverse distributed systems to validate our model and methods. On 

the other hand, we will do comparison with the existing study with 

respect to dynamic cohesion metric. 
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